Calculuss
The Defindte Integral

1. " The definllte integral has meny uses, the simplest of which
1s probaebly area. Reecall that in chapter 4 it was used in this
way. Recall alsc that the integral was explained there as an
antiderivative; the function integrated (the integrand) was thus
the derivative of the integral.

increase in the area (the value of the integral). Therefore, if
the function is constant, if it graphs ahorizontd 1line, the rate
at which the area increases must 2lso be constant. We see at
once that it is, since the region will be rectangular. Similar
arguements prevail when the value of the function increases or
decreases =e- the area increases faste:r or slower, respectively.
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AS x INCREABBS, THE
AREA UNDER THE LINE
INCREASES AT A CONSTANT
RATE, 5.

A= §5'x

AS x INCREASES, THE
AREA INCREASES AT AN
INCREASING RATE.

Obviously, then, one method offeomputing the integral would
be to use antiderivatives. (This was done in chapter 4.) But we
might also divide the area under the curve into rectangles to find
a value. In chapter U4 we approximated this value with rectangles
from the x-axis rising to the graph of the function. We also noted
that if the recéf&ngles betame narrower and narrower, the approxi-
mation would become better and better; if this Process is carried
to its limit we obtain a true value for the area -- and the integral.

We shall take up this latter method first, and in order to
take the limit we will use summation notation, to which we now
turn our attention.

2. Summation notation is a kind of mathematical shorthand to
represent a sum of certain members of g series. The notation CON=
8ists of the Greek sigma, the generalized term, and two indices

of summation:
=™

The expression above would be read, "The sum from 1 to 5 of a sub i."
It represents the sum of five terms:

5
;Z. aiﬂal“"az'}aj*a{'_'.'as
The '1' 13 a dummy symbol, used only in the single expression,
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the index of summation. Any letter could be used. The top and
bottom numbers are the greatest and smallest values of this index.
The value of the index is inereased by increments of one.

To use this notation effectively, we must know more about it.
Consider c=any constant and d3 any kind of term. Then

;é;ﬁdj = cd1+cd2*cd3

® CF 4
i=1 J
Similar arguements show that the general case is true:

. n
%‘a ch =c é;; d,
We can also show that
n n n
%(ax"'bx) = kgx 8 +%bx
For simplicity, we define

éi 1 =n = 1+§+1&*-'+1 (with n terms)

Now we can use a mathematician's trick to obtain a2 value for
the summation 6rom 1 to n of k; the trick is to go both forwards
and backwards.

n
ék = 1+2.+3+- e 2l

Backwards, n
Nt (Nel)de oo d241 =E;;(n+1-k)

Adding these will, of course, give us twice the sum we want; this
double sum is

n n
- k4 k-k) = (n+1)
N =

p g |
= (n+l) 1 (n+l is a constant)
=
= (n+l)n
Since this is twice the value we seek, we multiply by ¢ to get

K = %n(n-rl)

M-
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The next formula is for a sumation with k°. This is  —

fit X2 » % n (n+1) (2n+1)
k=1

It is found by using an unreascnably obscure trick: Take the fact
(k+1)3 = %3 = 342 4 3k 4 1

Then say that (therefore) the sum from 1 to n of the Left Member
must equal the sum from 1 to n ef the Right Member. The equation
thus formed, if worked out properly, will eventually result in
the formula above.

Now that we have a method that works (once), we try it againg
the result is that

EEEKB - n2§n+1!2

This one, of course, uses (k+1)h-ku. This method also waks for

summatlons of k to higher mwers.

3. Now back to finding areas. The area under the curve can be
divided by vertiecal lines into areas easlly approximated by rec-
tangles. The width of the rectangles is determined arbitrarily by
the width of the intervals along the x-axis. The héight is deter-
nméned by the value of the function at some wvalue of x in the inter-
val. X& is clear that as the nunber of intervals inereases, and
the width of each decreases, the relative widths become less impor-
tant; whether or not the intervals are equal is unimportant as the
limit is approached.

It can also be seen that the pPlacement of the value of x from
which the height is taken for the rectangle is not important. The
choice is constantly being narrow&d and the possible values of the
function come closer and closer together. If you would like to
see a dlscussion of this in terms of greatest and least possible
areas approaching the same limit, refer to your text; the matter
is discussed at great lengthon pages 206-211, also 200-203.

To actually use this information, we set up a summation from
a (or somewhere) to n of the rectangles which approximete the ares
we want. We then take a limit as n approaches infinity and the
widths of the rectangles gatesmall. Precisely and formally stated
the definition is quite complex; the simpler but less precise
methed alluded to at the beginning of this paragraph will be explained
with an example following the formal definition. Note that (in
accord with the arguments of the precedling paragraphs) the intervals
are all taken as the same length and the values of the function at
the ends of the intervals.#®

BEFRe definition in fully generalized form is on page 214 of the
text.
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A function is integrable on an interval 'E.b if there
exigts a number A, the definate integral, with the following
property:

For each e) 0 there is a corresponding w»0 such that

$ e

n
D=2\ 4be
EE% f(a + k -E-)Q_EE) - &k

for every P.ht.é-.(w.

The term Eiﬂ is simply the
width of each rectangle. The value
of the fumction is taken at the end
of each rectangle -- & plus k widths.

As mentioned before, as a practical " t____; b‘

|
matter (when using ‘consistent® rectangles) ;a
we can find A, the definite integral, by taking
the 1imit as nee; of the summation expression. For exampie,

£(x) = x+1 ago.‘-.-,!}‘w
S-r(osubze)(beg) _ B (e k.
k=1 n n n Ezf(k n )
” n
25 @41
k=1
b n
=2(03 x + 1)
n ey =1
2

= ﬁe 3(n%n) + bn)

We now take the limit as n< agp

2 2 2
lim rﬁb b + b = b + b = A
nY 4% 2n 2

Of course, if we left a in the expression we could find an area
bounded on the left by some line other than x=0. This result can
be checked with geonetry, 48 suggested by the flagure:

/ Triangle is 45° right
/ add redtangle's area

/|
/o

““.I....
&
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L, We now return te the antlderivative idea. Since every
antiderivative requires the appending of a constant (possibly
‘zero), there are an infinite number of antiderivatives for each
function. It seems probable, however, that the only difference
between two antiderivatives of a function would be the value of
the constant. It is this idesa we new wish to prove:

ir Fl(x) and Fz(x) are different antiderivatives of the function

f in some interval, then Fl(x) o= Fz(x) + (some constant) in that
interval.
Take G(x) = Fl(x)-Fz(x)
Then G' = Fy'=F,"* but since F, and F, are antideriv-
atives o% the same functicii, theif derivatives
must both equal f.
Thus, G®' &« 0

By the Thecrum of the Vean (#4 of chapt. 7)

G(xl) - G(sz)a G'"(X)(x -x,.0 where all x are in
the interval in question and ng— ®< Xy

Since G'x)=0, G(x,) = G(x..) for all X, and x, in the
interval. “In othe words, G is constaﬁt. and the
theorum is proved.

To continue our discussion, we should reccensider the expres-
sion for the integral:

/bf(x) dx
a

This.is read, "The definite integral from a to b cof f." The
letter x is the variable of integration. Iike the index of
summation, this is a dummy variable.: Thé function (here denoted
as f) is the integrand. The & and b are the lower and upper
limits of integration.

Suppose F(x) is an antiderivative of f (in [a.b] )+ Recalling
that the integrsl is also eén antiderivative, there must be a
constant, ¢, so that

x
f(t)dt = F(x) + ¢
for all x in [a..b] .

We can solve for e by using the case, included above, when
Xx=2. Then

0 = F(a)+e
Or

¢ = -F(a)
Substituting the constant back into the equation yvields

4/xf(t)dt = F(x) - F(a)
2

We now, finally, have a way to compute any integral for
which we know an antiderivative., This computation is expedited



wbe

by the use of still another symbol. We write
F(xyz OI‘[F(!)]E for F(b)-F(a).

For example,
2

/0 (2x41)dx = x2+x]S
= 6 -0
= 6

With relatively limited knowledge of antiderivatives, there
mey be times when neither the antiderivative nor the summation
method wlll be very efficient. Until we Xnow more, we may wish
to approximate by rectangles; one way 1s to use the Midpoint
Rule. This uses the same method as implied by the definition;
instead of having n=an infinite number, we use a finite number
of intervals (each equal to the others). The value of the function
is taken at the midpoint of each interval.

MIDPOINT RULE

> (%)b=2 —
I

n
k=1 n

where X = a + $k-1)b-a i

n
which 1s the midpoint of
the k%M interval.

Befcre finding any real use for our ability, we will formal-
ize and further our purely mathematical studies of the integral.

5 The formal definition of the definite integral has already
been given. The following definitions are concerned with area
and reveal several properties of the integral:

AREA COF A RECTANGLE is its length times its width.

AREA of a region which is the UNEON OF NON=-CVERLAPPING RECTANGLES
1s the sum of the areas of these rectarigles.,

AREA BOUNDED BY x=a, x=b, y=0 AND y=f(x), where f is integrable
in [a,Y and positive when a<x<b, is the value of

lbf(x)dx.

AREA bginded by x=a, B=b, y=0,and y=F(x), where f im integrable
afx ¢ but NECATIVE a¢x{c, is

:jpf(x)dx.

B
AREA BCUNDED BY y=e¢, y=d, x=0, AND ¥=2(y) is
b
- 8(¥&dY- if gP0 when cK¥Ed,

7f g{y)dy, if g{O when ﬁ(;(d, where g is integrable
c
in the interval eSy<d.

ANY AREA WHICH CAN BE DIVIDED INTC A FINITE NUMBER OF RECIONS
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FOR WHICH AREAS ARE KNOWN IS THE SUM OF THOSE ARESS.

The fact that all usable methods will yield the same result
will net e proven here.

6. Up to now we have tacitly assumed that integrals exist =
but we have also only used continuous functions as examples.
We will now present some theorums partially answering the question,
"What theorums are integrable?”

The Tirst two theorums can be proven by using greatest and
least approximations; this is done in the text on pages 218 and
216. (They are rresernted ir 'reverse' order.)

THEORUM 1: If f(x) is continnous 1ﬂ:a;} it is integrabrle there.
EHEORUM 2s If f(x).is noneinecreasing or neori-decreasing lﬁ:a.ﬂ

It is integrable in a;b
This follows from #1.

THECRUM 3: 1If f(x is integrable 1n[ja.ﬂ ¢+ and ¢ is constant,
"

h b
j’ ¢ f{x)dx = g’ f(x)dx.
a a
According to our definition,

n
rd AT - b_r\
cf(x)dx lin” tec f a-h:_ﬁl i

Aceording“to the rules for sunmation, we may take
out the constant ¢, leaving the expression of the
definition of the desired integral, tinmes c.
THEORUM 41 If f(x) and g(x) are integravle inla,d ,
b b b
J £ (2)ep(x))ax =/ f(x)dx +/ g(x)ax.
a a a
The proof follows the pattern of #3.
THEORUM 51 If f(x) is integrable in{ a,5 , it is bounded therej
there exists an m and an ¥ such that L £ (x)S M for a= ©= b,
This can be seen intuitively by considering the
are under the curve as the function becomes infinite,
THEORUM €: If f(x) is inteprable 1n£;a,§fand mE f(xf M for &£y,

m(b.-a)gfbf(x)dxim(b-a).
a

We multiply by 2%2 in one of our conditions to get

w i) (a+ k3]
m(2ER)E 1 (x) (Bo2)< m(2=8), }_‘sz % taleer agis :

We then take the summation from 1 to ni

v;p' be=a 2 ) (P=2y< i (b-a)
m(==)< S fx)(2=2)L S (=2

ﬁ n %1 n lr==q h

The extreme members can be workéd out, giving
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n(bee) S L £(x) (B=2) < pi(pea)
k=1 n

We finally teke the limit as n= .« The extreme
members are constants, and thus are not alffected;
the middle member becomes the integral.

THEORUM 7: If f and g are iuntesradle in [&st&&ﬂd f(x)<g(x) for
all a—x~b,

b b
J f(x)ax & J gl{x)dx.
a a

We define F(x)=g(x)ef(x). «f(x) is integrable
(#3; e==1) and g(x) is integrable; thus F(x) is
zlso integrable (#l). Further, 0S g )=f(x)=F(x),
8¢ we may choose m=0 to substitute into the
equation of #6,
n(bea) = 0 fJPF(:{)dX
a

Thus : >
j(g(x)-fzx)u ax = o,

Py theorunm #4, thio -

/be:(:ﬂdx - /rbf(X)dX .Z 0.
a a

ox

fg(x)dxz /bf(x)dx.

a a

THEQRUM 81 If f(x) is continuwous in|a,¥ and a< o% b,

/(bf(x)dx = fbf(x)dx +)’bf(}:)dx.
8

a c

This idea follows from the quite obvious one that
if you add vp scme terms, then the others, and
then add the two sums, you will obtain the same ane
swer as addimg all the terms the first time. This
is then applied the tre guamations which in turn
(when the limit is taken) vield the integrals.

COROLLARY TO #83 Theorums® remains true for any a2, b, and ¢
such that the intesrals exist.

The proof fellows frem the supplementary definitions
guxiite following pmgw.
P
DEFINITIONg If &E b, then J f(x)dx = g{af(x)dx.
T

a
This alsoc means that,faf(x)dx = 0.
a
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7 Our formael study of the definite integral now takes us to

the idea which we have accepted since chapter four - that the
integral is a derivative. We must first discuss two pProperties

used in the proof: N

THEORUM 10:%* INTERMEDIATE VALUE THECRUM: If f(x)_isﬂcontinuous
onfa,b] , and f(a)=A and £(b)=B, then fhere €xbstwean A and B
there "exists a ¢ between 2 and b such that f(e)=C.

The proof will not be glven here, but we will
consider the validity. Since the function is
Eontinuous on the interval, and the interval is
closed, no Value of the funatihonan result in,
the function being infinite. . v, %)
Thus it is bounded. The funce ~eeedeeaie AR
tlon must take on every value(a”m.”\w 5
between A and B, since it ls 7 ae P o
continuous, and thus will inter- . :
sect y=C at least once. The diagram illustrates
this.

Cbviously this may not be true if the funetion is rot continuous,

ineluding cases where it becomes infinite, because the function

nay never take on a value which we might choose.

THEQRUM 11:; THEORUM OF THESZMEAN FOR INTEGRALS: If f is continuous

on ,lﬂ o there is o numberfbetween a and b such that

b : 4
/ £(x)dx = £(c)(b-ga).
a

By #5 (and the Extreme Value Thecrum of chapter
&) we know that there are btounds, m end M. By
#6 we have b

m(b-2)< [ f(x)dx <¥(b-a).
This statement implies that there is one rumber
(between m and ¥) which will give the exact value
of the integral,bthat is 2 D such that

)(bf(x)dx = D(b-a).

)
8ince the Extreme Value Theorum tells us that we
can choose values of x so that f(x0)=m and f(x, )=M

(with the x values in ga.g]), we can employ #10
to say thet the value i1s" taken on by the function
in the intervsl.

Geometrically, this is akkin to saying that there is an average

value of the function and that this average value can be used to
construct a rectangle with the same area as the area under the curve.
It would be very diffiecult to find sveh a value, but we will not
have to to use it in our next proof.

¥ The careful reader will note that we skipped 9. The theorum

called "9" in the text has already been presented; this keeps the
numbering the same.
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THECRUM 12y FUNDAMENTAL THEORUM OF CALCULUS: The function f 1is
continuous on fa.bJand C 18 & number in thie interval. We define

F(x) =_/}f(t)dt
for each x in the 1nterv;1. Then
F'(x) = f(x).
S0 long as x+h 18 within the interval, #8 tells

us that‘/F+h +h
2 f(x)dt = éxf(tddt + 4} f(t)dt.

We have defined F so that this is the same as
x+h
F(x+h) = F(x) +;f f(t)dt.
X

We now apply the Theorum of the Mean for Integrals
to obtain X+h
/ f{t)dt = f(e)*h {c in the interval)
- d

and
f(e) = F(x+h)h— F(x).

By the definition of continuity we can say that

lim f(c) = f(x).

cox
At the same time, egxhs0 x+h # X and (since ¢
must be between x and x+h) cpx.

By substitution for f(c) and the previous state-
ment we write

F(x+h) = F(x) _
ﬁ13£x+ . (x f(x%gy

or
F'(x) = f(x).

The hypotheses may be less restrictive; such theorums are proved

in more sdvanced courses.

X
The Fundamental Theorum implies that every (continuous) éﬁﬁﬁwy"
function has an entiderivative. It also meeng thet differentlation4 a
are inverse processes, like addition end subtraction or multipli-
cation and division (except division by zero)s Integratiorn and
differentiation are inverse only when some extre condition is ine

cluded; as we have proved it, the condition is thet "f is continuous."

You will notice that this theorum proves what we have been
saying all aleong. Belng proved does have advangages, however.
The careful student will notice that we have proved this without
begeing the guestion; that is, without uging the intuitive argument
of antiderivatives we used esrly in the chapter.
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8. We do not have a systematic method of finding antiderivatives,
and when expressiong become long it is often very difficult to find
any. In this section we will Tid & way to calculate some of these
complex expressions. It is obvious that every formula for finding
derivatives alsc helps to find antiderivetives, but often direct
application of these equations to = given problem is not possible.

In this section we will be looking at the application of the chain
rule this way.

Although our purpese ie tec simpl$fy the use of Eheidezivarule
in finding entiderivatives, we begin by introducing s news;symbol.
We have been using the definate integral and we have szaid that this
is a certain antiderivative (see part 4 and part 7, theorum #12).
If the limits of irtegration are not specified, however, we don't
know which antiderivative to use. It ig only natural therefore that
the following symbol be called the "indefinate irtegral" and repre-
sent the general antiderivativesof the function (f):

Jf%(x) dx

A third syncnym for the antiderivative is "primative fumetion.”

We have this symbol in this chapter solely for the purpcse of making
a theorum easy to prove. e use the indefinate integral in the
following theorum, really a lemna:

THEORUM:  Within a closed interval [ a,bl: Let h be a function of
X with a continuous derivative and let & be a continuous fanction
of u, where u=h(x). Then

[etntx)) n'x) ax = [fe(u) au.

From the chain rule we know that if we define
G(x) = fg(xz),

G'(hi{x)) = g(h(x)) n'(x).

In differentials we would write

aG(h(x)) = g({h(x))n*(x).

dx

Similarly, 6G&(u) = g(ﬁ%x@ﬁﬁ?(x_
or dG(u) = g(u)h'(x)dx, since u=h(x).

These equations tell us that the antiderivative

of g(u)du is equivalent to the antiderivative of
g(h(x))dx. (Besiges substitution, this conelusion
requires theorum 12 which implies that integration
and differentiation are inverse proceses. )

The careful student will note that the preceding discussion
explains the ineclusion of the "dx" notation. With the funetions
used in the proof, we pretend the expressions are for the differentials
Thus: dG(h(x)) = g(h(x))n'(x)dx  and Ac¢(u) = g(u)du.
But du = h'(x)dx. Thus when using s Fnd the following theorum
the "dx" notation serves =s an aid EheLﬁg‘memory.

- e _Antegrals, the some-idea—rs—wgefut

— e T Imdte—definat LL
THEORUM: GhdeﬁffﬁﬁfEéﬁé?é@ﬁ&iiiEﬁgiasmabnxexm o
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9. There 1s some direct application of the theorem Tor finding
indefin&te integrals to ocur work with definite integrais sinee we
have shown that definite integrals are antiderivatives. However,
most applicaticns to definite integrals make ase of the fellowing
theorum, which is hased on the preceding ones

THEOREM: Under the same hyp?t?eses 88 in the preceding theorem:
} h(b
fs&ix))h'(x)dx = [ g(u)du. (t=h(x))
a n(a

The preceding theorem means that if G{(u) is an
antiderivative of g{u), then G(h(x)) is the anti-
derivative for g(h(x))h'(x). We then have from
the Fundamental Theorem of Caleulns

ethtx) ne (x)ax = 6(h(x))| 1oa
a = G(n(a)) - G(n(a)).

We zlso have

(v) lu=h
///h g(u)du = G(u)ﬁnhfzg
h(a) = G(h(b)) - G(h(a)).

These equations provide proof of the theoram.

The use of change of variable is illustrated by the fellewing ex-
amples. The first method meXes use of the theorem of the preceding
section end the second requires the theorem of thés section. For
most problems the second method is casisr.
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10. Area between curves is the sum or differance cf the areas
from the curves to the axigs. A thorough and illustrated dis-
cussion of this is given in your book.

Refer to 8, ARTA BFETWEEN CURVES; p. 238,

11. The integral is useful for many things besides finding area.
In most cases the applicability of the integral 1s proven by using
the definition. As a student, you may ®im8 it hard to understand
how the integral can be used 1ln any of these. IT 80, you may wish
to try to apply the intuitive reasoning we used in the first section
of this chapter in regard to aree., For example, is it logieal to
say that the functeon expressing motion will be the derivative of
the function expressing the work done? If you are convinced of

the truth of this, the use of the definate integral in work problems
is logical.

For the remainder of the Coakter you will be working in the
textbook. The authors of your text have used a slightly different
symbolisms: Instead of having divisions along the x=a%xis uniform
and equal to Eﬁé. they use the more general X4+ A8 a general value
for x (tetween Xy and x1+1) they chese ( Je» and to represent
the difference1x1+1-xi. that is, the width of the intervel, they

use Z_kix.

12. Begin work on p. 2LLs S, WORK.



